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Abstract. A brief description is given of the derivation of series expansions for the three- 
dimensional Ising model of a ferromagnet and antiferromagnet as a high-field grouping. 
New results are given for the high-field polynomials for the face-centred cubic lattice to 
order 8, the body-centred cubic lattice to order 11, the simple cubic lattice to order 13 and 
the diamond lattice to order 17. 

1. Introduction and summary 

In this paper we extend the series expansions of four three-dimensional lattices, the 
face-centred cubic, body-centred cubic, simple cubic, and diamond, as a field or p 
grouping. We have introduced the problem, defined the notation, and given the general 
theory in previous papers (Sykes et a1 1965, 1973a,b,c to be referred to as I, 11, 111, IV 
respectively). 

We give new results for the high-field polynomials L ,  and L ,  for the face-centred 
cubic lattice; for the complete code F, and Llo ,  L ,  , for the body-centred cubic lattice; 
for F6 and L12,  L,,  for the simple cubic lattice; for F , ,  F8 and L,,, L I S ,  L,,, L , ,  for 
the diamond lattice. 

The diamond lattice is of especial theoretical interest because it apparently yields 
low-temperature expansions for the spontaneous magnetization, and the specific heat 
and susceptibility in zero field, all of whose coefficients are of one sign (Block 1963, 
Essam and Sykes 1963). (This property is common to the white tin lattice (Block 1963) 
but it suffices to study the diamond lattice since it is clear from earlier work on the 
face-centred cubic and close-packed hexagonal lattices that the differences between 
these two systems will be extremely small (Domb and Sykes 1957).) 

The extension of field groupings for the four lattices studied is a first logical step 
towards the extension of their temperature groupings which we describe subsequently 
(Sykes et a1 1973d). 

It is our main object to communicate new results; the length of the calculations 
makes it impractical to report them in detail. The actual mechanics of obtaining such 

1 Present Address : Department of Dynamical Climatology, Meteorological Office, London Road, Brack- 
nell. UK. 
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data is rather specialized and rests often on ideas drawn from disciplines remote from 
physics and apparently of no relevance to the physical applications. The information 
contained in the complete codes has application to a wide variety of problems: they 
provide a concise summary of the sublattice polynomials (I1 4 2), for a study of order- 
disorder transitions in non-stoichiometric binary alloys (Bienenstock 1966, Bienenstock 
and Lewis 1967) and the staggered susceptibility, together with its field derivatives, 
of the Ising antiferromagnet (Rapaport and Domb 1971) ; they also arise in the deriva- 
tion of low and high density expansions for hard sphere lattice gases (Gaunt and Fisher 
1965, Gaunt 1967). 

2. Derivation of complete codes for the diamond and face-centred cubic lattices 

The diamond-face-centred cubic code system has already been introduced in 11, § 3. 
It closely resembles that of the simple quadratic lattice. The four vertices of each shadow 
are vertices not of a square but of a tetrahedron and the shadow lattice is the face- 
centred cubic lattice. The shadow lattice is a first-neighbour lattice instead of a first- 
and second-neighbour lattice ; but it is three dimensional instead of two dimensional 
and the enumeration is complicated by the necessity of distinguishing triangles and 
tetrahedra of significant and insignificant parity. On balance the problem is a little 
easier, the number of graphical codes at each order being slightly less than for the simple 
quadratic system. 

As we have shown in 11, 4 3, the partial generating functions or complete codes for 
the diamond lattice can also be regarded as codes for the face-centred cubic lattice; 
for the former the appropriate substitutions are given by (2.6) and (2.7) of I1 and for the 
latter by (3.9) of 11. 

We formalize the concept of the diamond-face-centred cubic code system by a 
straightforward generalization of the treatment of 111, Q 2. If n tetrahedral shadows 
do not touch they correspond to the code (4n, 44. In general any strong embedding, 
in the face-centred cubic lattice, of n sites forming T tetrahedra of significant parity, 
t triangles of significant parity (which do not lie in tetrahedra), and p edges which do 
not lie in tetrahedra or triangles of significant parity (and therefore correspond to pair 
contacts) yields a code : 

(2.1) 
and this defines the algebraic code system. The code system is identical in form with the 
simple quadratic system (3.1) of 111, but differs in the interpretation of p on the shadow 
lattice. Not every code in (2.1) occurs on the lattice. For example, from (2.1) by setting 
T = t = 0 and n = 8 we obtain one possible sequence of codes of eighth order : 

(4n - p - 2t - 3T, 4n - 2p - 3t - 4T, p ,  t ,  T )  

(32,32), (31,30, l), . . . , (19, 6, 13), (l8,4, 14), (17,2, 15),(16,0, 16). (2.2) 
It is possible to pile eight tetrahedral shadows so as to have 13 contacts between pairs 
(as we illustrate in figure 1); it is not possible to find arrangements with more than 
13 such contacts: the last three codes of the sequence (2.2) are non-graphical for the 
diamond-face-centred cubic code system. (The fact that a code is non-graphical for the 
diamond-face-centred cubic code system does not necessarily imply that it is non- 
graphical for the white-tin-closed-packed hexagonal system ; the latter system has the 
same algebraic codes defined by (2.1).) The total number of graphical codes in Fs for 
the diamond lattice is 91. 
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Figure 1. Eight tetrahedral shadows arranged to correspond to the code (19,6,13) on the 
diamond lattice. There are 6 isolated vertices and 13 contacts between pairs. 

To obtain the complete codes F, and F,  we have followed HI ,§  3 and counted and 
coded all seven and eight point graphs ; as before we have exploited the principle of 
complete code balance to find the contribution of some separated graphs. The complete 
list of eight point graphs was generated on the KDF9 computer at the National Physical 
Laboratory using methods developed by one of us (BRH). Much of the counting and 
coding was done by computer using a program developed for this purpose (Elliott 
1969). We give the codes F, and F8 together with the high-field polynomials L14, L15, 
1969). We give in appendixes the codes F, and F, together with the high-field polynomials 
L14,  L I 5 ,  L, ,  and L,,  for the diamond lattice derived from them. 

(2.3) (I&,  8, ?, 8)  = U + ( 3 a + 4 8 + 3 ~ )  t ( a + 2 8 + 3 ~ + 4 6 )  P 

we obtain for the face-centred cubic lattice the high-field polynomials : 

L ,  = 8uZ7 + 36u2, + 3 3 6 ~ ~ ~  + 135Ou3O+ 3 5 2 8 ~ ~ ~  +9036u3' - 1 1 6 0 ~ ~ ~  + 1 0 3 8 ~ ~ ~  

- 2 8 1 4 0 0 ~ ~ ~  - 6 2 2 4 9 8 ~ ~ ~ +  1 5 0 3 9 1 2 ~ ~ ~ + 8 3 5 6 0 4 1 ~ ~ ~  - 2 8 2 6 0 6 6 4 ~ ~ ~  

+ 34148478~~' - 1 8 9 0 2 1 6 0 ~ ~ ~  +40441 19fu4' (2.4) 
L ,  = 28u30+96u31 + 7 8 6 ~ ~ ~ + 2 4 3 2 ~ ~ ~ + 9 8 0 4 u ~ ~ +  1 9 3 1 4 ~ ~ ~  + 2 9 1 4 6 ~ ~ ~  

+ 2 0 5 5 0 ~ ~ ~ ' -  3 2 2 9 5 0 ~ ~ ~  - 4 7 4 8 0 6 ~ ~ ~  -4371355$u40 + 1944846~~ '  

+40271875u4' + 3 2 4 3 8 5 0 8 ~ ~ ~  - 4 5 2 8 5 7 7 6 5 i ~ ~ ~  +916579240u4' 

- 8 5 3 6 9 5 7 4 1 ~ ~ ~  + 3 9 3 1 0 5 4 2 0 ~ ~ ~  - 726994276~~~.  (2.5) 

3. Derivation of complete codes for the simple cubic and body-cenhed cubic lattices 

The code system for the simple cubic lattice corresponds to the possible contacts between 
octahedral shadows. The piling of octahedra together is visually difficult ; the corre- 
sponding shadow lattice is the face-centred cubic with first and second neighbours. 
If for any configuration of shadows we denote by n, the number of points common to 
s shadows, the algebraic code system can be written : 

(6n-n2 -2n3 - 3n4-4n5 - h6,6n-2n, - 3n3 -4n4- 5n5 - 6n6, n2, n3,  n4, n5, n6). (3.1) 
The code system for the body-centred cubic lattice corresponds to the possible contacts 
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between cubic shadows. The piling of cubes is visually simpler but the number of differ- 
ent types of contact is larger ; the corresponding shadow lattice is the simple cubic 
lattice with first, second and third neighbours. The maximum possible value of s is 
now eight and the algebraic code system can be written : 

(8n - n, - 2n3 - 3n4-4n, - 5n6 - 6n7 - 7n,, 8n- 2n, - 3n, -4n4- 5ns - 6n, 

- 7n7 - 8n8, n2, n3, n4, n5, n6, n7, ns). (3.2) 

In both (3.1) and (3.2) the quantities n, can be given graphical interpretations on the 
shadow lattice but we have generally not found these useful. Because of the complexity 
of the code systems it is more difficult to exploit the principle of complete code balance 
to find the contributions of separated graphs. We have derived by direct counting the 
complete code F6 for the simple cubic lattice, and the complete code Fs for the body- 
centred cubic lattice. We give these, together with the derived high-field polynomials, 
in appendixes. 
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Appendix 1. Partial generating functions 

Body-centred cubic lattice 

F5 = 24(22, 11,7,2, 1, 1)+24(22, 10,8,2,2)+24(23, 12,7, 3,0, 1)+ 12(24, 16, 2,4,2) 

+3(24, 16,0,8)+48(24, 15,4,3,2)+8(24, 14,6,3,0, 1)+48(24, 14, 6 , f ,  2) 

+96(24, 14, 5,4, 1)+36(24, 14,4, 6)+48(24, 13,8, 1,2)+24(24, 13, 7,3, 1) 

+ 12(24, 12, 10,0,2)+48(24, 12,9,2, 1)+ 108(24, 12,8,4)+36(24, 10, 12,2) 

+3(24,8, 16)+24(25, 16, 5,2, 2)+48(25, 15, 7, 1,2)+96(25, 15, 6,3, 1) 

+24(25, 14,9,0,2)+144(25, 14, 8,2, l)+48(25, 13, 10, 1, 1) 

+48(26, 18,3,4, 1)+24(26, 18,2,6)+336(26, 17, 5, 3, 1)+144(26, 17,4, 5) 

+24(26, 15,9, 1, 1)+648(26, 15,8,3)+516(26, 14, 10,2)+120(26, 13, 12, 1) 

+72(26, 12, 14)+ 104(27, 19,4, 3, 1)+24(27, 19, 3, 5)+480(27, 18,6,2, 1) 

+432(27,18,5,4)+336(27,17,8, 1, 1)+168(27,17,7,3) 

+48(27, 16, 10,0, 1)+744(27, 16,9,2)+48(27, 15, 11, 1)+96(27, 14, 13) 

-132(26, 16,8,0,2)+336(26, 16, 7,2, 1)+408(26, 16, 6,4) 

-432(28,21,3,3, 1)- 1296(28,20, 5,2, 1)-984(28,20,4,4) 

+336(28, 19,7, 1, 1)+ 1752(28, 19,6,3)+72(28, 18,9,0, 1) 

- 1008(28,18,8,2)+ 1464(28,17,10,1)-3q28, 16, 12) 

- 1344(29,21,6, 1, 1)+ 1752(29,21, 5, 3)-312(29,20,8,0, 1) 
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+ 3912(29,20,7,2) + 2616(29, 19,9, 1) + 1656(29, 18, 11) 

- 5664(30,23,4,3) + 32(30,22,7,0, 1) - 8820(30,22, 6,2) 

-4728(30,21,8, 1)-5340(30,20, 10)- 120(31,24,6,0, 1) 

- 12504(31,24,5,2)i,6168(31,23,7, 1)-2016(31,22,9) 

+ 720(32,24,8)- 24480(32,25,6, 1) + 16668(32,26,4,2) 

- 56720(33,26,7)- 39144(33,27,5,1) + 80604(34,28,6) 

+43968(34,29,4, 1)+ 18240(35,30, 5) + 19440(35,31,3, 1) 

- 50248(36,32,4)+346008(37,34, 3)-281208(38,36,2) 

- 334864(39,38,1) +27985w40,40). 

Simple cubic lattice 

F6 = 1(19,6, 12,0,0,0, l)+24(21, 10,9, 1,0, l)+24(21, 12, 5, 3,0, 1) 

+24(22, 11, 10,0, 0, l)+56(22, 12, 6,4)+ 144(22, 12, 7, 2, 1) 

+48(22, 12, 2,0,2)+96(22, 12,8, 1,0, l)+24(22, 13, 5,3, 1) 

+ 12(23, 12, 10,0, 1)+264(23, 13,7, 3)+456(23, 13,8, 1, 1) 

+ 54(23, 13,9,0,0, l)+288(23, 14, 5,4)+720(23, 14, 6,2, 1) 

+ 60(23, 14,7,0,2) + 72(23, 15, 3, 5) + 360(23, 15,4,3, 1) 

+96(23, 16,2,4, l)+4(24, 12, 12)+1632(24, 14,8,2)+780(24, 14,9,0, 1) 

+1020(24, 16,4,4)+816(24, 16, 5,2, 1)+6(24, 16, 6,0, 2)+96(24, 17,2, 5) 

+336(24, 17,3,3, l)+6(25, 14, 11)+5136(25, 15,9, 1)+11340(25, 16,7,2) 

+48(22, 14, 3,4, l)+96(22, 14,4,2,2)+6(22, 16,0,4,2) 

+ 2472(24, 15, 6, 3) + 2328(24, 15,7, 1, 1) - 258(24, 15, 8,0,0, 1) 

+2232(25, 16,8,0, 1)+4560(25, 17, 5, 3)- 12(25, 17, 6, 1, 1) 

+ 1120(25, 18,3,4)+ 84(25, 18,4,2, 1)- 1092(25, 19, 2, 3, 1) 

+5976(26, 16, 10)+28152(26, 17,8, 1)+11578(26, 18, 6,2) 

-7044(26, 18, 7,0, 1)-2016(26, 19,4, 3)-6672(26, 19, 5, 1, 1) 

- 2064(26,20,2,4) + 33798(27, 18,9) - 16380(27, 19, 7, 1) 

-51612(27,20,5,2)- 10422(27,20, 6,0, 1)-8052(27,21,3,3) 

- 1224(27,21,4,1, 1)- 1578(27,22, 1,4)-72288(28,20,8) 

-248496(28,21,6, 1)- 64020(28,22,4,2)+ 13581(28,22, 5,0, 1) 

- 1980(28,23,2,3) + 2519(28,24,0,4) - 507354(29,22,7) 

+47856(29,24,3,2)+4332(29,24,4,0, 1)-70140(29,23, 5, 1) 

+341606(30,24, 6)+614112(30,25,4, 1)+40176(30,26,2,2) 

+2418105(31,26,5)+ 148636(31,27,3,1)- 1193821$32,28,4) 
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-446340(32,29,2, 1)-4395996(33,30,3)+2392518(34, 32,2) 

+2610540(35,34, 1)- 16415w36,  36). 

Diamond lattice 

F7 = 6(16,6,8,2)+ 12(17,7,9, 1)+24(17,8,7,2)+4(17, 10,3,4)+72(18,8, 10) 

+480(18,9, 8, 1)+498(18, 10, 6, 2)+36(18, 10, 7,0, 1)+96(18, 11,4, 3) 

+24(18, 11, 5, 1, 1)+1832(19, 10,9)+2736(19, 11, 7, 1)+1428(19, 12, 5 , 2 )  

+ 160(19, 12,6,0, 1)+208(19, 13,3, 3)+ 132(19, 13,4, 1, 1)+24(19, 14, 1,4) 

+4(19, 15,0, 3, 1)- 1482(20, 12,8)+7248(20, 13, 6, l)+6240(20, 14,4,2) 

+792(20, 14, 5,0, 1)+816(20, 15,2, 3)+492(20, 15, 3, 1, 1)-32(20, 16,0,4) 

+24(20, 16, 1,2, 1)+6(20, 16, 2,0, 2)+82548(21, 14, 7)+44052(21, 15, 5, 1) 

+ 168(21, 16, 3,2)+744(21, 16,4,0, 1)+96(21, 17, 1, 3)+12(21, 17,2, 1, 1) 

+ 12(21, 18,0,2, 1)- 636948(22, 16, 6)- 389172(22, 17,4, 1) 

-40116(22, 18,2,2)-9608(22, 18, 3,0, 1)-604(22, 19,0, 3) 

-852(22, 19, 1, 1, 1)-455352(23, 18, 5)-2128(23, 19,3, 1) 

+ 1428(23,20,1,2)- 1416(23,20,2,0,1)- 196(23,21,0,1,1) 

+ 10941345(24,20,4) + 1959264(24,21,2, 1) + 30766(24,22,0,2) 

+23796(24,22,1,0,1)-29221216(25,22,3)-2585304(25,23,1,1) 

- 14188(25,24,0,0, 1)+ 34148478(26,24,2)+ 960552(26,25,0, 1) 

- 18902160(27,26,1)+4044119~28,28). 

Fs = 12(18, 6, 10,2)+6(18,8, 6,4)+6(19, 6, 13)+12(19, 7, 11, 1)+96(19, 8,9,2) 

+3(19,8, 10,0, 1)+84(19,9,7, 3)+12(19,9,8, 1, 1)-2%20,8, 12) 

+ 372(20,9, 10, 1) + 888(20, 10, 8,2) +48(20, 10,9,0, 1) + 564(20, 11,6, 3) 

+180(20, 11, 7, 1, 1)+114(20, 12,4,4)+24(20, 12, 5,2, 1)+24(20, 13,2, 5) 

+702(21, 12,8,0, 1)+3600(21, 13, 5, 3)+ 1032(21, 13, 6, 1, 1) 

+ 136(21, 14,3,4)+210(21, 14,4,2, 1)+ 12(21, 14, 5,0,2) 

+ 24(21, 15,2,3, 1) + 17475(22, 12, 10) + 26952(22, 13,8, 1) 

+ 17064(22, 14, 6,2)+ 1842(22, 14, 7,0, 1)+ 5076(22, 15,4, 3) 

+3012(22, 15, 5, 1, 1)+774(22, 16,2,4)+612(22, 16,3, 2, 1) 

+87(22, 16,4,0,2)+12(22, 17,0, 5)+84(22, 17, 1, 3, 1)+6(22, 18,0,2, 2) 

+7278(23, 16,6,0, 1)+ 12728(23, 17,3,3)+3924(23, 17,4, 1, 1) 

+16(20, 13,3,3, 1)+2106(21, 10, ll)+8820(21, 11,9, l)+9576(21, 12,7,2) 

- 29388(23, 14,9) + 54876(23, 15,7, 1) + 61938(23, 16, 5,2) 

-756(23, 18, 1,4)+ 1044(23, 18,2,2, 1)+84(23, 18,3,0,2) 
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-152(23, 19,0,3, 1)+12(23, 19, 1, 1,2)+642427+(24, 16, 8) 

+41324(24, 17, 6, 1)-235080(24, 18,4,2)-24558(24, 18, 5,0, 1) 

-27588(24, 19,2, 3)- 17064(24, 19, 3, 1, 1)+888(24,20,0,4) 

-732(24,20, 1,2, 1)-228(24,20,2,0,2)-9630870(25, 18, 7) 

-6421896(25,19, 5, 1)-758826(25,20,3,2)- 151593(25,20,4,0, 1) 

-24756(25,21, 1, 3)-18300(25,21,2, 1, 1)-516(25,22,0,2, 1) 

+ 6(25,22, 1,0,2) + 16993932(26,20, 6) + llMW8(26,21,4, 1) 

+ 1071264(26,22,2, 2)+247004(26,22, 3,0, 1) + 13828(26,23,0, 3) 

+ 23960992(27,23,3,1) + 856704(27,24,1,2) + 336849(27,24,2,0, 1) 

+ 16128(26,23, 1, 1, 1)- 27~26,24,0,0,2) + 110567592(27,22, 5) 

+ 11252(27,25,0,1,1)-522167473+(28,24,4)-78129084(28,25,2,1) 

- 990252(28,26,0,2) - 725436(28,26, 1,0, 1) +936899592(29,26,3) 

+ 69309708(29,27, 1, 1) + 307203(29,28,0,0, 1)- 853695741(30,28,2) 

- 20320352(30,29,0, 1) + 393105420(31,30, 1)- 72699427~32,32). 

Appendix 2. High-field polynomials L(u) 

Body-centred cubic lattice 

L,, = 1 5 6 ~ ~ ~  + 2 4 1 8 ~ ~ ~ +  1 9 5 6 8 ~ ~ ' + 8 9 8 3 2 ~ ~ ~ + 3 1 2 9 8 4 u ~ ~  + 5 3 4 9 6 0 ~ ~ ~  

- 5 8 2 5 2 8 ~ ~ ~  - 21524820~~'- 122555960~~' + 1 8 4 7 0 4 1 6 2 ~ ~ ~  

+4891550184~~~  - 25940728064~~~ +626692939Wu3' 

- 888275381 1 6 ~ ~ ~  + 78607759128~~~ - 42991931004~~~ 

+ 13362730248~~~ - 1812137048&~~'. 

L, = 1 2 ~ ~ ~  + 8 0 0 ~ ~ ~  + 9 7 2 0 ~ ~ ~  + 651 1 2 ~ ~ ~  + 302497~~ '  + 8 9 7 8 4 8 ~ ~ ~  
+ 1976484~~'-2366032~~'- 3 4 7 0 1 9 9 4 ~ ~ ~  -284193600~~~  

- 7 0 4 4 7 6 4 8 8 ~ ~ ~  + 6025344368~~~  + 36918882951~~~ 

- 323871 1 2 7 4 3 2 ~ ~ ~  + 1029543128536~~~ - 1871827463448~~' 

+ 2164621975492~~' - 16307831 1 1 4 2 4 ~ ~ '  + 779883805680~~~ 

- 215938102896~~~ + 2644915381*~~~. 

Simple cubic lattice 

L ,  = 3u' + 1080~'  + 11562~' + 101 6 8 5 ~ ~ '  + 8 1 4 7 0 9 ~ ~  ' + 3 8 9 4 5 9 7 ~ ~ ~  
- 12171 1 7 7 ~ ~ ~  - 1 3 5 7 4 0 9 5 3 ~ ~ ~ -  397387542~~' +4338189541$~~~ 

+ 11093270424$~~~ - 170115111953~u28 +682270008351~~~ 
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- 1 54275448422 1 u3 ' + 226037262 194 1 u3 ' - 223 8908 3954 10u3 
+ 1498634619771~~ - 65257507553 1 u~~ + 167442968667~~ ' 
- 19258 135545~~~. 

L,, = 96~'~ + 732~'~ +23976u2' + 163820~~' + 1256172~~~ + 6874170~~~ 
+ 12343160~~~- 220608330~~~ - 1032194100~~~ +226958615uZ7 
+43210929384~~~ - 18514105314~~~ - 1306808581968~~' 
+ 7163363995983~~' - 20147356102164~~~ + 36242844825794~~~ 
- 44637329262900~ 34 + 3836575761 872 lu - 22758644334336~~ 
+ 8917222503222~~~ - 2082822677172~~' + 220080372439i$~~~ 

Diamond lattice 

L,, = 2u''+2~~''+18836~'~+515810u'~+7916204~'~-58478578~'' 

- 1418314198~'~ +21334110908~'~ - 138980195662~'~ 
+ 555924571090~'~ - 1521665590807i~~' + 2991 146529116$u2' 
- 431538 1895540~~~ +4592751408686~~~ - 3572264632004~~~ 
+ 1977785317192~~~ -7391530oO732~~~ + 167308649600~~~ 
- 17336930162!$~~~. 

L, = 40~' ' + 3 166~'~ + 154248~' + 3 199836~'~ + 32944408~'~ - 476674482~'~ 
- 5773707720~'~ + 11888654050@~'~- 900637157640~'~ 
+ 40975 50 1 5 1 1 1 3fu ' - 1274 1 10 1 8 68 5983~' ' + 28650886947846~ 22 

-47891909381080~~~ + 60175860118355$~~~- 567711861254593~~~ 
+ 3968 1684986502~ 
- 1429734380020~ 

- 199603902229 54$~ " + 6838 587 1293 3 6~ 28 
+ 1 377 1 7342597%~ '. 

L16 = 626~'~ +33634ul3 + 1148682uI4+ 18106680~" + 110230585$~'~ 
- 3234261 150~'~ - 19541 105053~'~ + 640954742858~'~ 
- 56851 10554290$1~' + 29306941485862~~' - 102700495543167~~~ 
+ 261215271993786~~~ - 498289778476257i~~~ + 724299694749954~~~ 
- 805866713062893~~~ + 682656831924498~~~ - 433224056104135i~~~ 
+ 199652521843564~~~ - 63145125857905~~' + 12265456611610~~~ 
- 1103747907487$~~~. 

L17 = 42~'~ +792OuI3 +308249~'~+7844420u'~ +92790088~'~+ 180320296~" 
- 19705003862~'~ - 371 15043752~'~ + 3324202355814~~' 
- 34966832701788~~' +203911552422240~~~ - 800560594465168~~~ 
+ 22829541 19079018~~~ - 491 190718782891 2~~~ + 8 133709804858208~~~ 
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- 10456683268746776~~~ + 10437353943227692~~~ 

- 8021829992619180~~~ +4661326193944755u30 - 1982031993840852~~' 

+ 582 1294366270 1 8 ~ ~ ~  - 10558840488 1 9 2 0 ~ ~  + 89 15561 3 4 6 4 5 % ~ ~ ~ .  
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